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ABSTRACT

Time-optimal rendezvous maneuvers are studied. The system
considered in this report consists of two space vehicles namely, a
target vehicle (non-maneuvering vehicle) and an interceptor vehicle
(maneuvering vehicle) under the influence of the earth gravity. An
interceptor vehicle has propulsive jet systems which can produce a
variable thrust (positive or negative) independently in three per-
pendicular directions. The case where the target vehicle is in the
elliptic orbit is mainly considered and some analytical difficulties
involved in the circular orbit case are discussed. Several time-optimal

trajectories for different configurations are shown.
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SUMMARY

Time-optimal trajectories have been generated for the elliptic
orbit rendezvous problem. A multiple engine control system which
can apply a variable thrust (positive or negative) independently in
three perpendicular directions is used. The optimal control law is
found using Pontryagin's maximum principle. Neustadt's method is
then used to find the initial values of the adjoint variables which
arise in the use of the maximum principle. Neustadt's method trans-
forms the two-point boundary value problem into one of maximizing a
function where the location of the maximum is the optimum adjoint
initial condition, and the value of the function at the maximum is
the optimum (minimum) time. The Fletcher~-Powell modification of
Davidon's method is used to find the maximum of the function.

A comparison is made of the multiple engine control system used
in this investigation and the single engine control system for which
the magnitude and direction of the thrust vector are found as a
function of time.

A computer program has been developed which will solve the time-
optimal control problem for an n~dimensional time-varying linear
system with r control variables, r < n, with the control constraint
2

u < 1.

|u.|_g 1, i=1, 2, «...., T, OT ; 2

1

N
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I. INTRODUCTION

A vital part of space missions today is the rendezvous
maneuver. In the United States manned lunar mission, the Apollo
program, the LEM vehicle, after leaving the moon, must rendezvous
with the Apollo vehicle before returning to Earth. In many space
missions, minimizing the fuel consumption during the rendezvous
maneuver will be desirable. However, in a rescue mission, minimizing
the time duration of the rendezvous maneuver will be of utmost
importance.

The rendezvous maneuver is usually separated into three phases

as follows$

l. The ascent or launch phase in which the maneuvering
vehicle, hereafter called the interceptor vehicle,
is launched into some parking orbit.

2. The terminal phase in which the interceptor is
maneuvered from the parking orbit to the immediate
neighborhood (possibly a few hundred feet) of the
non-maneuvering or target vehicle, which is moving
in a known Keplerian orbit, so that the docking

maneuver can take place.




3. The docking phase in which the two vehicles are
brought together,

In the last several years many papers have appeared in the
literature on all phases of the rendezvous maneuver., The early
investigations of the terminal phase were terminal control problems,
in other words, they were concerned with guidance schemes which
were not optimal but would complete the rendezvous maneuver. These

guidance schemes were of two typess

l. Impulsive guidance schemes based on orbital mechanics.
2. Continuously burning rockets usually based on
proportional navigation.

In the impulsive guidance schemes one or more impulses are
imparted to the interceptor so that it will meet the target vehicle
at a prescribed point in space. Another impulse is then applied to
reduce the relative velocity between the two vehicles to zero.
However, there is one drawback to this scheme; instantaneous velocity
changes are not possible. The rockets must burn for a finite period
of time, and large errors can occur if these burning times are not
short enough to validate the assumption of an instantaneous velocity
change. This has been shown by Stapleford (1962). Impulsive
guidance schemes have been studied by Clohessy and Wiltshire (1960),

Hornby (1962), Eggleston (1962), and Bender (1963).




In proportional navigation the thrust function is determined
so that the angular velocity of the relative velocity vector is
proportional to the angular velocity of the line of sight vector.

By controlling the angular velocities of these two vectors in this
manner the two vehicles will be brought together at some later time.
A study utilizing proportional navigation was performed by Cicolani
(1961). Harrison (1963) investigated the rendezvous maneuver using
collision course and pursuit course guidance, which are forms of
proportional navigation.

With the basic rendezvous maneuver well established, the next
step is to develop guidance schemes which will achieve rendezvous,
but will also be optimal with respect to some criteria, i.e., fuel,
energy, time. This changes the problem from one of terminal control
to one of optimal control. The object of most rendezvous optimi-
zation studies has been minimization of fuel consumption. Studies
of this type have been performed by Goldstein et al. (1963),
Tschauner and Hempel (1964), Tschauner (1965), Meditch and
Neustadt (1963), and Kaminski (1966). Kaminski's study was also
minimum time because of the constraint of a continuous, constant
thrust.

Although minimizing fuel consumption during rendezvous is
important, another area of importance is minimizing the time required

to complete the rendezvous maneuver. This would be of prime

4




importance in a rescue mission. An investigation of time-optimal
rendezvous was performed by Kelley and Dunn (1963), but no synthesis
procedure was developed. Paiewonsky and Woodrow (1965) investigated
time-optimal rendezvous with limited fuel when the target vehicle

is in a circular orbit. However, no studies of time-optimal rendez-
vous have been performed when the target vehicle is moving in an
elliptic orbit. The maneuvering vehicle in the studies by
Paiewonsky and Woodrow (1965) and Kelley and Dunn (1963) is one with
a single engine, and the attitude of the thrust vector with respect
to some reference is found as a function of time so that rendezvous
is completed in the minimum possible time. However, rather than
having a single engine, the propulsion system may be one which can
apply small thrusts independently in the longitudinal and the two
transverse directions. The Gemini vehicle is an example of this
type. A study of the rendezvous maneuver with this type of space
vehicle was performed by Stapleford (1963), but the maneuver was
not an optimal one.

The object of this investigation is to find the control or
guidance law, subject to certain constraints, which will bring the
interceptor into coincidence with the target vehicle with zero
relative velocity when the target vehicle is moving in a known
elliptic orbit, and will perform this maneuver in the minimum

possible time. The interceptor vehicle considered will be one which




can impart a variable thrust independently in three perpendicular
directions. Thus, the problem is to find the magnitude and direction
(positive or negative) of the three thrust values so that the
rendezvous maneuver is completed in the minimum possible time.

The equations of motion are written with respect to a moving
coordinate system whose origin is located at the target vehiqle and
which rotates with the angular velocity of the radius vector from the
earth's center to the target vehicle. Using the true anomaly of the
target vehicle orbit as the independent variable and the ratio of
the difference-coordinates to the length of the radius vector from
the earth's center to the target vehicle as the dependent variables,
a system of linear differential equations with periodic coefficients
is obtained. The linearization of the equations is valid if the
distance between the two vehicles is small compared to the length of
the radius vector from the earth's center to the target vehicle.
This linearization allows the equations of motion describing motion
in the plane of the target vehicle orbit and those describing motion
normal to the orbit plane to be decoupled. Thus, the two problems
can be handled separately. The out-of-plane motion is that of a
simple oscillator where the coefficient of the forcing function is
periodice

The optimal control law is found by application of Pontryagin's

maximum principle. However, use of the maximum principle introduces

6



the adjoint variables for which the initial conditions are unknown.
An iterative procedure developed by Neustadt (1960) is then used to
find the initial conditions of the adjoint variables. Neustadt's
procedure transforms the two-point boundary value problem into one
of maximizing a function where the location of the maximum is the
desired adjbint initial condition, and the value of the function at
the maximm is the optimum (minimum) time. A convergence techmique
developed by Fletcher and Powell (1963) is used to find the maximum
of the function.

Optimum rendezvous trajectories for various initial conditions,
maximum allowable accelerations, and values of the target vehicle
orbit eccentricity are presented. A comparison of the single engine

control and multiple engine control is also given.




II. FORMULATION OF THE PROBLEM

In this section the derivation and the solution of the equations
of motion for the terminal phase of the rendezvous maneuver are pre-
sented.

Several assumptions are made in the analysis, however, these

are standard assumptions in rendezvous studies. The assumptions ares

1. The earth is spherical. Any perturbing forces due
to a non-spherical earth are not considered.

2. The distance between the two vehicles is small
relative to the distance of the target vehicle
from the earth's center,

3. The interceptor is a point mass. The attitude
stability of the vehicle is not considered.

Lo The orientation of the interceptor is such that the
directions of the three independent components of
thrust coincide with the x, y, z directions shown

in Figure 1.

A, Derivation of Equations of Motion.

The problem is to describe the relative motion between a
reference body (target vehicle) moving in a known elliptic orbit of

- 8




eccentricity e and another body (intercéptor) which is in the
neighborhood of the reference body. A moving coordinate system
centered at the target vehicle and rotating with the orbital angular
velocity of the target vehicle is employed as shown in Figure l. The
x-axis is directed outward along the radius vector from the earth's
center to the target vehicle; the y axis is perpendicular to the

x axis, lies in the target vehicle orbit plane, and is directed in
the direction of motion of the target vehicle; the z axis is normal
to the target vehicle orbit plane, and its direction is such that a
right-handed coordinate system is formed.

The equation of motion of the target vehicle is

T42%y ¥
g o 4Tt Pt (2.1)
t dt2 rtB
Id( ) .
where —g— = ( ) denotes differentiation with respect to time in

an inertial reference frame, 'ft is the vector from the earth's
center to the target vehicle, and p is the gravitational constant.

The equation of motion of the interceptor is given by

v Idzi"i U i“l Tf
a2 ri m

where ?i is the vector from the earth!s center to the interceptor,

T is the thrust vector, and m is the mass.




The position of the interceptor relative to the target vehicle

is
"6=-f.‘i —-‘=xﬁl+y +z?13’ (2,3)
and . " _'F
3 = I‘i - + E . (2.[;)
From equation (2.3) we have
?i = (rt + X) ﬁl + Yy ﬁz + 2z ﬁ3 . (2¢5)

Now consider the term.-l- .

ry

-3/2
2, 2 2
L pp— 5= L1422, Li—ixztﬁ-l (2.6)
r13 |7 +3)| rtB Tt ry

Equation (2.6) is now expanded in a Taylor series, and the assumption
that the distance p between the two vehicles is small relative to

the distance ry of the target vehicle from the earth's center allows
higher order terms to be neglected. Equation (2.6) becomes

.i.=..1_[-.3i‘+o((f-)2)]. (2.7)
Ty Tt

Substitution of equations (2.5) and (2.7) into equation (2.4)

gives

10



pEY "I' =~ -~ ~

P=-—~3—[-2xnl+yn2+zn3]+ . (2.8)
r

t

Now consider the differentiation of p with respect to time in an

inertial reference frame.

I.& RA
p;——p.=—£+ wXxXp (2.9)
dt dt
where —Ez denotes differentiation with respect to time in the

rotating reference frame and is given by

= . - » - + . -— . o
prrials B +y N, + 3Ty (2.10)

W, which is given by

=6 i3 (2.11)

is the orbital angular velocity of the target vehicle. Differenti-

ating equation (2.9) once more gives

R.2~ R,~ R..
= + 2 x—+—xp+Bx@xP) . 2.12
qt2 WETE T at (2.12)

After substituting equations (2.10) and (2.11) into (2.12) and

equating (2.8) and (2.12), the scalar equations of motion are

obtained:

11




5E-2éi-§y-(é2+2—uB- x=m—x (2.13a)
Ty
.. ) T
3f+265c+6x-(62--£§)y=r-n—z | (2.13b)
Ty
T
7+ P—ZB- = (2.13¢)
rt m

This is a set of linear differential equations with periodic

coefficients since Ti» é,é are periodic with a period equal to the
orbital period of the target vehicle. However, one obtains a much
simpler form of the equations if the true anomaly © is used as the

independent variable, and if one makes the transformation

x y z
g = — s N = ==y L =— . (2.1‘})
rt rt rt

The following identities are obtained by differentiation:

. e é sin ©

l+e cos ©
O ryet= i+ (-8 x (2.16)
Ty
262 e sin ©
e = - (2017)
l+e cos ©

where ( )' denotes differentiation with respect to the true anomaly 6.

12




The scalar equations of motion become:

1
BN o Do ot = — 7 (2.18a)
1+e cos © m ry e x
1
i+ 2 EY = —— Ty (2.18b)
m ry 92
1
Gt 4= ——— 1T, . (2.18¢)
mry 62
Also,
1 sz (l+e)2
(2.19)

ry &2 p (1+e cos )3

where Rp is the perigee distance of the target vehicle orbit.

For computational purposes it is advantageous to make the

following transformationss

R
4 =g e, "2’225' ’
x3=§2n , xh=;2n' R (2.20)

T

N

"
&

"
“h

13



and

T U
_)E max
m ~B(6) UYx
T. U
max
a5 W (2-21)
T2 _ Yhax )
m aiei Z

where L is an arbitrary length whose magnitude is chosen so that

x; =0(1), i=1, 2, eeeess, 6. A reasonable value of L is

12 = 2R(tg) + 7380 + (ko) (2.22)

Upay is the maximum allowable thrust per unit mass, and g(©) is the
ratio of the mass of the interceptor to the initial mass. The con-

trol functions Uy, uy, u,, are restricted to

‘ua| =1, a=X,5, 2 o (2.23)
Using matrix notation, the equation of motion becomes

£'(6) = A(6) x (8) + B(6) u (0) (2.24)
where x(6) is the state vector defined by
!
2
3 , (2.25)
L
2

1%
i
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u(6) is the control vector defined by

u

X
u(6) = |ug , (2.26)
u
'
and — _
0 1 0 0 0 0
0 0 2 0 0
l+e cos O
0 0 0 1 0 0
A= s (2.27)
0 -2 0 0 0 0
0 0 0 0 0 1
0 0 0 0 -1 0
[~ -
0 0 0
1 0 0
Upax LRp (1+e)2 0 0 0
B = 3 . (2.28)
p(1+e cos 6) 0 1 0]
0 0 0
0 0 1

From equations (2.13) or (2.18) one sees that the equations
governing motion in the orbit plane of the target yehic}e are de-
coupled from the equations governing motion normal to the orbit
plane, thus the one problem can be broken up into two completely

independent problems.

15.




B. Solution of Equations of Motion,

The problem under consideration is the solution of the set of
n first order linear differential equations
x'(6) = A(e) x (o) + B(6) u (6) (2.29)
where A(6 + 2n) = A(8). From linear system theory (see Appendix A)
it is known that the homogeneous part of (2.29) is reducible, that

is, by a linear transformation
x(8) = q(e) y (8) (2.30)

where Q(6) is a n x n nonsingular matrix, the system (2.29) can be

reduced to the form

y'(6) =D y (6) (2.31)
where D is a n x n constant matrix., It is sometimes said that
(2.29) and (2.31) are kinematically equivalent. The system (2.31)
possesses the state transition matrix

Y(e, 6,) = exp [(e - 6,) D] . (2.32)
Substitution of (2.30) into the homogeneous portion of (2.29) gives

Ay +@'=4AQy , (2.33)
and since Q(©) is nonsingular
(AQ-QY)y - (2.34)

Hence,

D=q% (ag-q) . (2.35)

16




The matrix Q(6) is called a Lyapunov transformation. By another

linear transformation
y=Rz (2.36)
the system (2.31) can be transformed into its Jordan canonical form?

z'= Az A . (2.37)

where -1 :
A=R DR . (2.38)

The state transition matrix of the system (2.29) is then given by

X(0,05)= P(6) axp [(6-6,) 4]P(8,) (2.39)

where

x(6) = P(e) z () . (2.40)
The matrix P~1(6) has been obtained by Tschauner and Hempel

(1965) and the following specific form is obtained from Lange and
Smith (1965).

c p 1/3 -q, 0O 0
- 2ql+ eut -eu 0 -q) 0O 0
e sind l+e cosO e coso
-1 - > 0 0 0
P (6)= (2.41)
3+e cosO 0 e sin® _ 2+e cos o 0o
-T2z 2 2
0 0] 0 0 1 0
0 0 0 0 0 1
L : _
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wheres

c = ']e;[l - (1+2 e2)1/l-e2] sin © - (2+3 e cos 6 + e?)sin I (2.42)

p = -% (1 + 3V 1-e2)- %_ [1 - (l-e2)3/2] cos ©
e

+% [(1+2 e?) v 1-e2 - 1] cos 26 - e p sint A (2.43)
q = (1 + e cos 9)2 (2.44)
q, == [(2+ e?)1/1-e2 - 2] sin © + % [(1+2 e2) v 1-e2 - 1] sin 20

3e

+ (1+e cos 6)2 sin™l A (2.45)
p = sin © (1+e cos 6) (2.46)

- —el

A = sin 6 2 (1 -v1-e<) cos © (2.47)

l+e cos ©

The Jordan canonical form of D is

© 1 0 o o o]
0 0 0 o0 o0 ©
0 0 0 1 0 ©
A= ’ (2.48)
0 0 -1 0 o0 O
0O 0 o0 o0 0 1
0O 0 0 0 -1 o0

18




and the state transition matrix exp{:(e - Go) A] is given.by

-
1 (9—90) 0] 0 0] 0]
0] 1 0] 0] 0 0
0] 0 cos(6-6,) sin(6-6,) 0 0
(2.49)
0 0 -sin(e—eo) cos(6-6,) 0 0
0] 0 0 0 cos(e-eo) sin(6-6,)
o o 0 0  -sin(6-8,) cos(6-6,)

The canonical form (2.48) corresponds to three decoupled second-order
systems? a pure inertia or l/s2 plant and two harmonic oscillators
with a natural period equal to that of the orbit period. The 1/s?
plant may be interpreted physically as motion in a similar coplanar
coaxial ellipse with higher or lower total energy. One harmonic
oscillator corresponds to motion in a coplanar ellipse with the same
period, but with different eccentricity and/or orientation.l

The other harmonic oscillator corresponds to the out-of-plane
motion and can be interpreted physically as motion in an ellipse

with the same period but with different inclination.

T ,
This interpretation was obtained from Lange and Smith (1965).
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The solution of (2.24) or (2.29) is given by
¢}

x(8) = X(e,6,) [50 + f x‘l(r,eo) B(r) u(+x) dit] (2.50)
%
where x is the initial value of the state vector, and
X(6,05) = P(8) exp [ (0 - &) AP, (2.51)
Also, X-l(G,Oo) is given by the relation

x1(e,0,) = X(6,,8) - (2.52)

Summarizing, the problem is: given the system governed by (2.24) with
the solution given by (2.50), find the control u(@) among all ad-
missible controls, i.e., |“<x| = 1, a = x, y, 2z, which brings the
system from its initial state x(6,) to the origin, i.e., x(6f) = 0,

in the minimum possible time.
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III. THE OPTIMAL CONTROL PROBLEM

In this section the basic optimal control problem is stated.

This is followed by a synopsis of Pontryagin's maximum principle

which is then applied to the rendezvous problem. Finally, Neustadt's

method, an iterative procedure for computing the initial value of the

adjoint vector which arises in the use of the maximum principle, is

presented.,

A. Statement of the Problem.

The motion of the system to be controlled is assumed to be

described by the set of n first order differential eqnations.l

x(t) = £(x, u, t) (3.1)
where?
(i) x(t) is an n-dimensional vector called the state
vector which at any instant describes the state
of the system;
(ii) wu(t) is an r-dimensional, r < n, vector called the
control input to the system. The magnitudes of

the components up(t), uy(t), eeees, u.(t), of the

1 1n the discussion of the general problem t is used as the inde-
pendent variable but when the rendezvous problem is discussed, © is
the independent variable.
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control vector u(t) are limited by the physical
bounds of the system. This is stated mathematically
as

uE€Evy (3.2)
where U is a closed set in the r-dimensional space
and is called the control constraint set. The con-
trol functions u;(t), i =1, 2, esees r, are assumed
to be piecewise continuous. Any control which is
piecewise continuous and satisfies (3.2) is called
an admissible control.

(iii) £(x, w, t) is an n-dimensional vector function.

The optimal control problem is to find the control function
u(t) which
(1) is admissible,
(ii) ©brings the system from its initial state x(t,) to
some prescribed final state E(tf)a and
(iii) minimizes the performance index or cost function J

of the system where

te
J = f g(x, u, t) dt , (3.3)
tO

A control u(t) which satisfies these three requirements is called an

optimal control.
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The total transition time (t; - t ) may be either an unknown
quantity or a prescribed constant, depending on the problem, For
the minimum-time problem the total time is to be minimized, hence
g(x, u, t) = 1. When the performance index is fuel consumption the
final time t; is specified, and g(x, u, t) = h(u), where h(u) is the

relation between the rate of flow of fuel and the control B(t)'

B. Pontryagin's Maximum Principle.

Pontryagin's maximum principle furnishes a necessary condition
for a control to be optimal. However, the existence and uniqueness
of an optimal control must be determined by other means. To be
presented here is the statement of the maximum principle and its
application to the rendezvous problem. The original proof of the
maximum principle can be found in Pontryagin et ale. (1962). A
geometric proof has been provided by Halkin (1963).

Consider the functionl

T

H = P X - g(f’ u, t) (3.4)

where H is called the Hamiltonian due to its similarity to the

Hamiltonian in classical mechanics. The components of the vectors

1 Note that min(J) = - max(-J). Hence, if one wanted to maximize
the performance index J, equation (3.3), + g(x, u, t) would appear
in the Hamiltonian rather than -g(x, u, t).
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p(t) and x(t) satisfy the differential equations

e A (3.5)
and

e .. (3.6)

— I — 1 = XXX n [ .

dt api » » » 4

Note that no boundary conditions are given for B(t)’ hence equation
(3.5) does not define a unique vector function. The vector g(t) is
called the adjoint or costate vector.
Pontryagin's maximum principle statess
Let u*(t) be some admissible control and let x*(t) be
the corresponding trajectory. If u*(t) is an optimal
control then there exists a vector g*(t) satisfying

(3.5) such that at every instant t, to, <t <tr,

H(x*, u*, p*, t) = H(x, u, p, t) (3.7)

with respect to all admissible controls.
That is, the optimal control function u*(t) is that control function
which maximizes the Hamiltonian for any given state.
u*(t) = argmax H(x, p, u, t) (3.8)
ReU
The maximum principle is now applied to the minimum-time
rendezvous problem. The governing differential equation with 6 as

the independent variable is
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x'(6) = A(6) x (8) + B(®) u (o) (3.9)
where A and B are defined by equations (2.27) and (2.28). The final
state of the system is the origin, i.e., x(67) = O. The control
constraint set is the unit hypercube, i.e., |“a| <1l, a=x, ¥, 2Ze

The cost function J is

8¢
J= j dé = Gf - eO . (3.10)
%
The Hamiltonian becomes
H=BTA_JE+pTBg-1 . (3.11)

The optimal control u*(6) is given by

u*(0) = sgn (BT p) , (3.12)

or

u*(0) = sgn (BT p)_,a=x7,2 . (3.13)
Thus, the system always operates at maximum power, and the components
of ¥ (0) have the value +1 or -1. This is the so-called bang-bang

control problem. The governing differential equation for the adjoint

vector is
p'(@) = - AT(8) p(0) (3.14)
The solution of (3.14) is
T
E(G) = x.l (@, 8) E(eo) . (3.15)
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The optimal control u*(©) becomes

17T

w(©) = sn[B X" (6, 05) p(05)] . (3.16)

The components of the optimal control function u* (©) aret

u_* = sgn {pl(eo) [ - % (1 + 37 1-e2) - 3% (1 - (l—e2)3/2) cos 6

((1 + 2¢2) v/ 1-e2- 1) cos 20 - e sin O(L+e cos 8) sin~A

o

+ e AO sin 6(1+e cos 9)] + py(65) [-e sin 6(1+e cos 9)]

p3(8,) cos 46 (1+e cos O)

N | od

- % ph(eo) sin A0(1+e cos 6)} R (3.17)

u® = sgn {pl(go)l}B—i- ((2+e?) v 1-e2 - 2) sin ©
-% ((1+2e2) v 1-e2 - 1) sin 20 — (1+e cos 0)2 gin—1a

+ (L+e cos 0)2 40 | - p,(6,)(1+e cos )2

+ % 93(90) sin AOG(2+e cos O) -

- % p,(6) cos 20 (2+e cos e)} ’ (3.18)

u* = sgn [— ps(eo) sin A6 + pé(eo) cos AG] (3.19)

1 The canonical form of the equations of motion has been used for
this calculation.
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where
_sin® [e+ (1 -V 1-e2) cos 6]

1l +ecos 6

’ (3.20)

0=06-90, . (3.21)

When the vehicle is controlled by a single engine for which the
direction of the thrust is to be found the control constraint set is

the unit hypersphere. The optimal control then takes the form

8T xL (6,0,) p(0,)

_u*(e) = (3022)

nBT x-lT(e:eo) 2(60) “
Thus, the engine operates at maximum power, and the direction cosines
of the thrust vector are given by equation (3.22).

The optimal control, equation (3.16), is not specified uniquely
since the initial value of the adjoint vector _}3(00) is not known.
Thus, the calculation of the optimal control requires the determination
of E(GO)‘ In linear two-dimensional systems and some simple three-
dimensional systems, this problem can be solved by running the system
backwards, that is, replace t with -t, start at the origin and investi-
gate the solution. This procedure gives surfaces, commonly called
switching surfaces, on which the components of the control vector
change sign. Thus, the optimal control function is known as a function

of the state of the system, i.e., a feedback control system. Since
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this can only be done in the simpler cases some other procedure must

be used for the more complicated problems. One such procedure has

been developed by Neustadt (1960).

C.

28

Neustadt 's Method.

Under consideration is the determination of the control
which will bring a given system from its initial state _)S(to)
to the origin in the minimum possible time. The motion of the
system is assumed to be described by the set of n first order

linear differential equations

x(t) = A(t) x (t) + B(t) u (¢t) (3.23)

where u(t) is an r-dimensional piecewise continuous function of
time and is constrained to a compact, convex set U which contains
the origin; in this particular case the unit hypercube, i.e.,

|uj] =1, i=1, 2, ees, re The solution of (3.23) is given by

x(t) = x(t,to)[_y,o + x}(z,t,) B(x)ulx) dr] (3e24)
tO

where x = E(to)°

Define
t

c(t) =¢- . X-l('r,to) B(t)u(r) dre u(v) admissible (3.25)
o

C(t) is called the set of reachable events and consists of those




points which can be transferred to the origin in time (t - tg),
using an admissible control. The boundary of C(t) is a surface
of constant optimal time. Each point x is a point on the
boundary of C(t) for some time t. At the point x, the normal
to the surface directed toward C(t) is the optimal initial value
of the adjoint vector. This has been shown by many authors, in
particular, Halkin (1963). These surfaces‘are continuous but
they are not necessarily smooth; corners may exist as shown in
Figure 2.

Since U is a compact, convex set, C(t') is contained in
Cc(t), i.e., C(t?)cC(t), for t'< t., Thus, there is a smallest
t, t*, for which x, € C(t*), i.e., there is a control which
transfers x, to the origin in the minimum possible time. Also,
X, is a boundary point of C(t*).

Use of Neustadt?!s method requires that the control system
be a normal control system. This requirement is satisfied for

our problem and discussed in Appendix B.

Define
¥ = - p(to) , (3.26)
and t
2(ty) = - f x(1,t0) B(x)u(x,¥) dr (3.27)
to

where u(t,¥) is given by

w(e,y) = -[een BT XY (5,808 ] - (3.28)
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The problem now is to find a vector ¥ which will map the
vector z(t, y_) into x, « Neustadt's method is an iterative
procedure which performs this mapping.

Consider the function
£ty ¥5 %) = ¥ o [2(t, ¥) - x,] . (3.29)

Let the domain of ¥ be restricted to those ¥ for which ¥ « x, = O,
This makes no restrictions on the problem since C(t) is convex
and the optimal ¥, y*, is the vector normal to C(t*) at X, and

directed away from C(t*). Hence,

\y* . >0 .

X
- “0

For ¥ # 0 it can be shown that f(t, ¥; x ) is a continuous,
strictly monotonically increasing function of t. Since C(t) is

convex

¥ oz(t, ¥) =¥ ey for all yeC(t), y # z(t, ¥) (3.30)
as shown in Figure 3b. Therefore, if z(t*, y_) # Xo

Y.E(t*, Y)EEO& ’

hence

£, ¥ %) =¥ . [z (B, W) -%]= 0 .

Since f(ty, V3 X,) is negative and (e, ¥s x,) is positive,
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at some time t = t*, £(t, ¥; x,) = O. This is the time for
which the z trajectory passes through the hyperplane which
passes through x with normal ."ﬁ as shown inﬂFigure 3a. This \_k
is the optimal ¥ for the point z(%, V), hence it is normal to
the boundary of C(t).

Define F(y; x,) as

£(F(y; x,)s ¥5 %) = O (3.31)

Therefore, t, < F(¥; Xx,) = t*. Also, F(Y; X,) = t¥*, the optimum
time, if, and only if z(t*, Y) = X in which case u(t, !) is the
optimal control which transfers x, to the origin in the time
(t*- to)e The validity of these statements can be seen from

the convexity of C(t). It was shown that

Vez(Fysx), V)ZV¥ .y

for all yeC(F(y; x,). But, by definition of F(y; %,)
Voo z (F¥s X0 ¥) =¥ o X

Therefore, if z(F(¥;x.),V)# X,,X, cannot lie inside C(F(\_k_; X))
and must lie outside of C(F(Y; Xo))e Since C(t*) is convex and
X, is a boundary point of C(t¥*), F(Y; X5) < t¥*, unless

z(F(¥; Xo)» \!) = Xo, in which case F(¥; X,) =t o« Thus, the

maximum value of F(Y; X,) occurs when z(F(y; X)) i) =X, e
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Therefore, the goal is to find a value of ¥ which will maximize
the function F(b Xo), where the maximum value of F(Y; J_co) is
the optimum (minimum) time, and the location of the maximum
determines the optimal control.

One aspect of Neustadt!s method which makes it extremely
useful is that the gradient of F(¥; x,) with respect to y is

proportional to the !terror vector"[:_z_(F(Y; X5)» !) - J_:.:] .

2. Computation

The iterative procedure for finding the maximum of the
function F(¥; x,) will now be presented.

The iterative procedure is started by making an initial
guess for Y, designated by Y.o' A reasonable guess is the unit

vector parallel to the initial state vector, i.e.,

= -ﬁi—n- (3.33)

J(—

Let y. be the i-th guess. The function z(t, ¥ ) is then generated
= -1

as a function of time until
£ty ¥, 5 X)) =¥y o [2(8, ¥;) -X%] =0

This time is F(}ki; X,)s and the gradient is given by
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-1
T %) = - (22) (2 x), ¥) - %] (3.34)

where ( ) is a non-negative function. A correction is now

at
made to ¥; and the procedure repeated with

Vo= +oy, . ' (3.35)
-5 =i

—i+l
Computation is stopped when the magnitude of the error vector is

less than some small value € :

“Z(F(Y_l, Xo)s ¥5) - g_co“< € . (3.36)

Since the gradient is known the method of steepest ascent can be
used for the correction, i.e., the correction is made in the

direction of the gradient of F3

oy, = Ky VF(yy5 x ) = - Ky [2(F(¥35 %) ¥5) - %] « (3.37)

It can then be shown (if K, is sufficiently small) that

Py, 5 %)= Flys x) (3.38)

Hence, the iteration method will converge to a value of ¥ which
will define the time-optimal control u(t, ¥), and will maximize
the function F(¥; Xo). However, Neustadt and Paiewonsky (1963)

have shown that finding the optimum ¥ may be difficult. In many
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cases the function F(Y; 50) is a very flat fuﬁciion of ¥, in
which case a small change in ¥ from the optimum creates a very
small change in F(y; x,) but a large displacement in the tra-

jectory
[2(F(y;5 x,)5 ¥) - %] -

Because the function F(Y; 50) is so flat the method of
steepest ascent converges slowly. A search was made to find a
more rapid convergent method. The convergence method used in
this study was developed by Fletcher and Powell (1963). It con-
verges rapidly and is also easy to program. This method is a
modification of the variable metric method developed by
Davidon (1959). The Fletcher-Powell method has second order
convergence, i.e., the procedure converges in n iterations when
the function is a quadratic of n variables. The correction &y;
is not made in the direction of the gradient (method of steepest

ascent), but in a modified direction defined by
oy, = Hy YF(¥y5 x,) (3.39)

where Hy is a positive definite, symmetric, n x n matrix. A
description of the Fletcher-Powell method is given in Appendix C.
The convergence rate of the Fletcher-Powell method for a

rendezvous problem is shown in Figure 4. 1In this example the
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criteria for terminating the computation was

llg(F(Y; %) ¥) - fpll<: 1073, Fifteen optimum steps! requiring
70 iterations were required for convergence. Although the
stopping time (time at which f(t, ¥; X,) = O) increases each step,
the magnitude of the error vector EE(F(Y; %5), Y) - Eé} does not
necessarily decrease each step. In fact, it generally does not
decrease much until the optimum time is established, at which
time it starts to decrease rapidly each step. In the example
shown in Figure 4, the magnitude of the error vector is larger
after 57 iterations than after the first iteration, but it then
decreases three orders of magnitude in the next 13 iterations.
This same example was worked using the method of steepest ascent
with optimum steps. A comparison of the two methods is given in
Figure 5. Using the method of steepest ascent with optimum

steps the optimum time was not obtained after 300 iterations as
compared to the 70 iterations required to obtain the optimum

time using the Fletcher-Powell method.

See Appendix C for a description of an optimum step.
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IV. CIRCULAR ORBIT

If the control system is normal (see Appendix B) the optimal
control, if it exists, is unique. However, when the control system
is not normal there may be more than one optimal control. There
will be an optimal control which is bang-bang, but there may be
others which are not bang-bang. When the target vehicle orbit is
elliptic the normality condition is satisfied, but when it is
circular the control system is not normal. Neustadt's method is
restricted to normal control systems, therefore the circular orbit
problem must be given further consideration.

The optimal control equations (equations (3.17) and (3.18))

for a circular target vehicle orbit are

ut = = sgn [& B (0,) + p3(65) cos 80 + py(0g) sin 80 ], (4.1)

and
uy* =-3gn [_pl(eo) A + pz(eo) - p3(9°) sin AG

+ ph(eo) cos A6 ] R (L.2)

Now let py(6,) = pB(Qo) = ph(eo) = 0, py(6,) # O, and the optimal
control becomes

u = sgn [Q] ’ (4.3)

and
u® = sgn [py(6,)] . (4ot)

Sgn Bﬂ is undefined, hence u,* is not uniquely defined; it can
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take on any value between +1 and -1. However, if there is more
than one optimal control at least one will be bang-bang. Therefore,
no generality is lost if u is restricted to +1 and -1. This type

of control is called singular control.

A requirement for the use of Neustadt's method is that the
control system be normal. It will now be shown that for non-normal
control systems Neustadt's method will not give a wrong solution.

It may not give a solution but if it does, the solution is optimal.
An example will then be given to illustrate the singular control
problem.

La Salle (1960) has shown that the set of reachable events C(t)
is convex. Therefore, if an admissible control satisfying (3.16) is
found which will bring the system from its initial state Xo to the
origin it is an optimal control. At some t Xo is a point on the
boundary of C(t). The normal to the boundary of C(t) at Xo, if it
exists, directed toward C(t) is the optimum initial adjoint vector.
The direction of the normal, if it exists, is unique. Therefore, a
unique solution is defined by the normal to C(t) except when the
direction of the normal is such that the singular control condition
sgn(0) occurs, in which case the optimal control is not unique.

The set of reachable events consists of two subsets: 1) the set of
points which can be reached by non-singular control, and 2) the

set of points which can be reached only by singular control. If

X. is a point which can be reached by non-singular control Neustadt's

2o
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method will give the solution since the direction of the normal to
C(t) is unique. When X4 is a point which can be reached only by
singular control Neustadt's method will not give the solution. The
optimal control is defined by sgn (0) and this is not defined. If
enough iterations are made Neustadt!s method will give a value of
the optimum time which is less than but a good approximation of the
optimum time, and it will give a value of the initial adjoint
vector which is close to the optimum initial adjoint vector. The
initial values of the adjoint variables which define singular con-
trol in this investigation are pl(eo) = p3(90) = ph(eo) = 0, and
po(6,) # 0. The portions of the boundary of C(t) which are defined
by singular control are hyperplanes since the normal to the boundary
at each point has the same direction. However, this is not true in
all singular control problems.

Theoretically, this singular control problem could be circum-
vented by using a very small value of the target vehicle orbit
eccentricity e. The control system is then normal, and the optimum
control is unique. However, the portions of the boundary which
would be defined by singular control for a circular orbit are very
flat, and it may be difficult to obtain a solution. Extreme
accuracy would be required to obtain a solution, and double precision

would probably have to be used in the computer program.
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Now consider the example

X3 = Xp + ul

) (45)
with the constraint
|u1| =1, |u| =1 . (4.6)
The optimal control functions found by applying Pontryagin's
maximum principle are
u# = sgn [p; (0)] (47)
u¥ = sgn [-py (O)t + py(0)] (4+8)

Therefore, in non-singular control u; is constant and u, switches

at most once. In singular control, p(0) = O, u, is constant and
u; can be any value between +1 and -1.

Optimal isochrones (boundary of C(t)) and optimum trajectories
are shown in Figure 6. The boundary of C(t) for t = 1.5 is given
by the curve ABCDA. The region defined by non-singular control is
that portion of the plane to the right of the curve BOC and the
portion to the left of the curve AOD. For any point to the right
of the curve BOC, for example point E, the optimal control is
initially uy = -1 and up = -1, When the trajectory intersects the
curve OC up switches to +1 and the trajectory goes into the origin.
The optimum initial values of the adjoint variables for this region
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are pl(0)<= 0 and p2(0)< O. Similar conditions exist for the
region to the left of AOD. For any point in this region, for
example point F, the optimal control is initially u) = 1l and up = 1.
When the trajectory intersects the curve OA u, switches to -1. The
optimum initial values of the adjoint variable in this region are
p1(0)= 0 and py;(0)= O. The singular control condition is

pl(O) =0 and pp(0) # O. Thus, uj = sgn (0) and uy = sgn (py(0)).
The region defined by singular control is the area bounded by the
curve AOB and the area bounded by COD. Now consider a point in the
singular control region, point G. There are an infinite number of
ways to reach the origin from point G. Three ways will be given:

1) Initially let u) = -1 and up = -1l. The trajectory is the curve
GHO as shown. When the trajectory intersects the curve OA switch
uy from -1 to +l. 2) Initially let u; =1 and up = -1l. The tra-
jectory is the curve GJO. When the trajectory reaches the curve

OB switch u; from +1 to ~1. 3) Let u; = - 0.08 and up = -1. The
trajectory will go directly to the origin without any switching
being required as shown by the curve GO. Since the singular control
condition is pl(O) = 0 and py(0) # O the portionsof the boundary of
C(t) defined by singular control are flat as shown by the curves AB

and DC. The curves OA, OB, OC, and OD are called switching curves.
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V. DISCUSSION OF RESULTS

A. In-plane Motion.

Because of the large number of parameters involved, thrust
level, orbit eccentricity, initial value of the true anomaly, initial
conditions, it is impractical to present results of a general nature.
However, so that some insight of the time-optimal maneuver can be
obtained, the initial conditions are chosen in the following manners
at a separation distance p of 150,000 2 ft. with a relative velocity
AV of 100 v 2 ft./sec. three situations are considered as shown at
point ¢ in the figure below. 1) the interceptor moving away from
the target vehicle along the line of sight ( Aﬁi), 2) the inter-~
ceptor moving perpendicular to the line of sight in the clockwise
direction ( Avé), and 3) the interceptor moving perpendicular to
the line of sight in the counterclockwise direction ( Avé); these
three situations are considered at four points in the x -~ y plane as

shown in the following figure;
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initial values of the true anomaly considered are 0° (perigee),

90°, 180° (apogee), 270° as shown in the following figure;

270°

<

q) 1800

0°
an orbital eccentricity 0590.5 and a perigee distance of 4100 miles
are used. Only points in the upper half of the x -~ y plane have
been considered since the optimal control function u* for the

initial condition -x, is just the negative of the optimal control
function for the initial condition xy,. In this investigation the
maximum allowable thrust acceleration is assumed to be constant.
Inclusion of the effect of a variable mass is not difficult. How-
ever, including this effect makes the presentation of any concise
results difficult if a range of specific impulse is considered.

The total thrust accelerationl, Amax’ considered in the above cases
is 0.25 ft/secz. Total thrust accelerations of 0.5, 0.75, 1.0 are
then considered for the above conditions only with 65 = 0° (perigee).
Optimum rendezvous trajectories for the above conditions are
presented in Figures 7 - 26.

1 This is the total thrust acceleration, hence the value of the
components is Up,, = Ama.x‘/—z .
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In Figures 7, 10, 12, 14, 16, 19, 22, 24 optimum rendezvous

trajectories are given for the situation when the interceptor is
initially moving away from the target vehicle along the line of
sighte In all of these examples the interceptor moves in the
counterclockwise direction. Optimum rendezvous trajectories for

the situation when the interceptor is initially moving perpendicular
to the line of sight in the counterclockwise direction are given

in Figures 9, 18, 21, 26. 1In each of these cases the interceptor
continues to move in the counterclockwise direction. Optimum
rendezvous trajectories are presented in Figures 8, 11, 13, 15, 17,
20, 23, 25 for the situation when the interceptor is initially
moving perpendicular to the line of sight in the clockwise direction.
Except for the case when 6, = 18(° (apogee) the interceptor must
reverse direction and move in the counterclockwise direction before
rendezvous occurs. Hence, the time duration of the rendezvous
maneuver when the interceptor is initially moving in the clockwise
direction is greater than the time duration when the interceptor is
initially moving in the counterclockwise direction. For instance,
consider the example when the interceptor is initially above the
interceptor and Apax = 0.25, 6, = 09, Slightly more than one orbit
is required to complete the rendezvous maneuver when the interceptor
is initially moving in the clockwise direction (Figure 8, case b)

and 1/2 of an orbit is required when the interceptor is initially
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moving in the counterclockwise direction (Figure 9, case b). For
the case when the target vehicle is initially at apogee (8o = 180°)
the gravity force is much smaller, and the interceptor does not need
to reverse direction to complete the rendezvous maneuver in the
minimum possible time. The effect of the gravity force on the
maneuver can also be seen by comparing the trajectories of the
examples when the interceptor is above (below) the target vehicle
and forward (behind) the target vehicle. As an example consider the
trajectories given in Figure 7. The interceptor is initially
150,000 v'2 feet from the target vehicle and is moving away at a
velocity of 1001V 2 ft/sec. When the interceptor is initially above
the target vehicle (case b) the maximum excursion from the target
vehicle is 3,500,000 feet as compared to 250,000 feet when it is
initially in front of the target vehicle (case d). The time duration
of these two maneuvers is 2/3 of an orbit and 1/3 of an orbit.
Optimum rendezvous trajectories for different maximum allowable
thrust levels are presented in Figures 27 - 30, The relation of the
optimum time to the thrust level for the examples presented in
Figures 27 and 28 is given in Figure 31. For the example shown in
Figure 28 there is a tremendous difference in the trajectories as
the thrust level increases from 0.25 to 0.5 ft/sec?. The difference
in the trajectories shown in Figure 27 is not as great. This effect
is also seen by an inspection of the curves given in Figure 3l. The
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optimum time decreases more rapidly for the example shown in Figure
28 than for the one shown in Figure 27.

| Optimum rendezvous trajectories for various initial values of
the true anomaly © are presented in Figures 32 - 34. These tra-
jectories are also given in Figures 1 - 26 but are presented in this
manner so that the effect of the starting point on the orbit can be
seen better.

The effect of the orbit eccentricity on the optimum rendezvous
trajectory is shown in Figures 35 and 36. The initial conditions
chosen are a separation distance of 200,000 feet with the inter-
ceptor moving away from the target vehicle at a velocity of
150 ft/sec. In Figure 35 the interceptor is initially above the
target vehicle and in Figure 36 it is initially in front of the
target vehicle. The effect of the orbit eccentricity on the tra-
jectory is greater when the interceptor is initially above the
target vehicle. The basic reason for this is that when the inter-
ceptor is initially forward of the target vehicle the effect of
gravity on the relative motion of the two vehicles is less than when
the interceptor is initially above the target vehicle. Hence, a
change in the gravity force because of the eccentricity of the
orbit does not have as much effect when the interceptor is forward
of the target vehicle. Another contributing factor is that the time

duration of the rendezvous maneuver when the interceptor is initially

45




forward of the target vehicle is less than the time duration when
the interceptor is initially above the target vehicle. Since the
time duration of the maneuver is less,the change in the gravity
force due to the eccentricity is less.

In figures 37 and 38 a comparison of the multiple engine
control to the single engine control is given. The total thrust
acceleration is the same for both cases. The time required for
rendezvous using multiple engine control will always be greater than
or equal to the time required for rendezvous using single engine
control. The reason for this is very simple. In the single engine
control the control constraint set Uis the hypersphere (in two
dimensions a circle), and the optimum control is some point on the
surface of this hypersphere. In the multiple engine control the
control constraint set is the hypercube (square in two dimensions),
and the optimum control is one of the vertices of this hypercube.
Hence, the optimum control in the multiple engine case is restricted
to one of the four points on the circle as compared to any peint on
the circle in the single engine control. In the examples considered
the minimum time required for rendezvous using single engine control
was 5 percent - 20 percent less than the time required using multiple
engine control. However, inspection of the optimum thrust angle vs.
time curve shows that there is a rapid change of 120° to 180° in the

optimum thrust angle. In reality, this rapid change may be very
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difficult to obtain, and large errors could result. The optimum
thrust angle vs. time plots given in Kaminski (1966) and Paiewonsky
and Woodrow (1965) show this same characteristic.

As was stated in Chapter IV when the target vehicle is in a
circular orbit there are certain initial conditions for which the
optimal control is not unique. For these initial conditions
Neustadt's method will not yield a solution. The same set of
initial conditions that were investigated for the elliptic orbit
case were investigated for the circular orbit case. Solutions were
obtained and optimum rendezvous trajectories for the case when the
interceptor is initially moving away from the target vehicle are
given in Figure 39. To investigate the singular region the coordi-
nates of a point in the singular region were found by integrating
the equations of motion in backward time from the origin using
singular control. The cocrdinates of this point were then input
into the computer program as initial conditions. A solution could
not be obtained. The optimum time calculated by Neustadt'!s method
was very close to the actual optimum time, and the initial value
of the adjoint vector was approaching the optimum one. The optimum
time was 1.57 and the optimum time computed by Neustadt's method
after 129 iterations was 1l.53. The optimum adjoint initial con-
ditions were pl(eo) = p3(60) = ph(eo) = 0 and pp(6,) = 0. The

adjoint initial conditions obtained by Neustadt's method were

47




p,(8,) =-4 x 1079, p3(8,) = 3 x 107, p,(6,) = 5 x 107 and

pz(eo) = 2, Thus, one can see that the optimum adjoint initial
conditions are being approached, but a solution gannot be obtained
for the singular control condition until they are matched identically,
and this is impossible using a digital process. An eccentricity of
0.01 was then used, but a solution could not be obtained. A unique
solution exists, however, to obtain the accuracy that would be

needed to get a solution double precision would have to be used.

B. Out-of-Plane Motion.

The out-of-plane motion is that of a simple oscillator with a
period equal to the period of the target vehicle orbit. Equation
(3.19) shows that uj is always +l or -1 and switches between these
two values every = units of time, except for the first and last
intervals of time which may be less than m as shown in the following

figure.

je——— T~ T —+

-1 I

Generally, only one switching will occur since less than 1/2 of an
orbit is usually required to nullify the out-of-plane motion. The

coefficient of the control function u, is periodic except when the
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target vehicle orbit is circular, in which case it becomes constant.
When this coefficient is constant a switching surface can be deter-
mined for ug’ as shown in Figure 41. This problem was first solved
by Bushaw (1958).

Typical out~of-plane motions are shown by the z - Z plots in
Figure 40. The initial conditions are z = 100,000 feet and
%z = 100 ft/sec. The curves for e = 0 and e = 0.5 are very close
together. This suggests that an approximate switching surface could
be used by assuming the coefficient of u, to be constant and using

the switching surface from Bushaw's problem.
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VI CONCLUSIONS

The rendezvous maneuver will be a very important part of space
missions in the future. 1In a rescue mission, minimizing the time
duration of the rendezvous maneuver will be of utmost importance.
This investigation is a study of the time-optimal rendezvous
maneuver when the target vehicle is moving in a known elliptic
orbit. The propulsion system of the maneuverable or interceptor
vehicle is a multiple engine system which can impart a variable
thrust independently in three perpendicular directions. It is
assumed that the orientation of the interceptor is such that the
directions of the three independent thrust components are:

1) perpendicular to the orbit plane of the target vehicle,

2) along the radius vector from the center of the earth to the
target vehicle, and 3) perpendicular to the radius vector from

the center of the earth to the target vehicle and in the orbit plane
of the target vehicle. The attitude stability of the vehicle is not
considered in this study.

The equations of motion are written with respect to a moving
coordinate system whose origin is located at the target vehicle and
which rotates with an angular velocity equal to the angular velocity
of the radius vector from the center of the earth to the target vehicle.

The true anomaly of the target vehicle orbit is used as the independent
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varibles, and the ratio of the difference coordinates to the distance of
the target vehicle from the center of the earth are the dependent
variables. By making the assumption that the distance between the two
vehicles is small compared to the distance of the target vehicle from the
center of the earth a system of linear equations with periodic coefficients
is obtained. This linearization allows the equations of motion describing
motion in the orbit plane of the target vehicle to be decoupled from the
equations describing motion perpendicular to the orbit plane. Thus, the
two problems can be handled separately.

Pontryagin's maximum principle is used to find the optimal control
law. TUse of the maximum principle introduces the adjoint variables for
which the initial conditions are unknown. Neustadt's method is used to
find these initial conditions. Neustadt's method transforms the two-
point boundary value problem into one of maximizing a function where the
location of the maximum is the desired adjoint initial condition, and the
value of the function at the maximum is the optimum (minimum) time. The
Fletcher-Powell modification of Davidon's variable metric method is used
to find the maximum of the function.

Optimum rendezvous trajectories for various initial conditioms,
maximum allowable thrust accelerations, and values of the target vehicle
eccentricity are presented. Maximum allowable thrust accelerations from
0.25 to 1.0 ft/sec2 are considered. Orbital eccentricities from 0 to
0.6 are investigated.

A comparison is made of the multiple engine control system used in
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this investigation and the single engine control system for which the
magnitude and direction of the thrust vector are found as a function
of time. This comparison shows that the single engine control system
takes less time than the multiple engine control system. However the
difference is very small compared to the total optimal time. This
comparison also shows the difference between the degrees of complexity
for handling the interceptor vehicle (maneuvering vehicle). 1In the
single engine contro} system, the vehicle needs to be rotated almost
180° in a short period of time. On the other ﬁand, in the multiple
engine control system, the attitude of the interceptor needs to be
changed in a similar way as the target vehicle whose attitude changes

very smoothly and slowly.
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center of intereeptor

earth

==X

target vehicle orbit

XYZ is an inertial reference system

x-axis is directed along radius vector from
center of the earth

y-axis is perpendicular to x-axis in orbit plane
and directed in increasing © direction

z-axis is perpendicular to orbit plane such that

a right-handed coordinate system is formed

Figure 1. Coordinate system
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Figure 3. Geometrical properties of Neustadtt!s Method
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z(0) = 100,000 ft
z(0) = 100 ft/sec
Upax = 0.25 ft/sec?
120 |
80 |
w -
a,b c
0 . . |
40 80 120
> z « 1073(ft)
»
~
& 0
el
-80
-120 (a), e=0, 6,=0 deg
(b), e=0.5, 6= 0 deg
(c), e=0.5, 6,= 180 deg
~160 |-
Figure 40. 2z-% plots with Uy, . = 0.25 ft/sec?
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APPENDIX A

REVIEW OF LINEAR SYSTEM THEORY

In this appendix a review of the theory of linear differential
equations is given.

Consider the set of n first order linear differential equations
x(t) = A(t) x(t) + B(t) u(t), x(t;) = x, (a2)

where A(t) is an n x n matrix, B(t) is an n x r matrix, and u(t) is

an r dimensional vectore.

Theorems Let X(t, to) be the n x n matrix which is the solution of

the differential equation

'?R' X(t, to) = A(t) X(t, to), X(tg, to) =1 , (A2)

and if the elements of A(t) are continuous functions of time, then

the solution of (Al) is
t

x(t) = X(t, to) [x, + [ XLz, to) B(x) ulx) dr| (A3)
to

The matrix X(t, to) is called the state transition matrix.t

1l

Any nonsingular matrix which satisfies the differential equation
(A2) is called a fundamental matrix. If it also satisfies the
initial condition X(t, to) = I it is called the state transition
matrix.
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Proofs Substitute (A3) into (Al).

The state transition matrix X(t, to)'possesses the following

properties:
l) X(t3) tl) = x(tB’ tz) x(tZ’ tl) (A)&)
2) XL(ty,ty) = X(tqy, tp) (45)
t2
3) det X(tp, t1) = exp J’ [trace a(x)] o (46)
ty

t
L) If, for all t f A(t) dtr and A(t)
t

1l
commute then
t2
X(tz’ tl) = exp A(T) dr . (A?)
Y
It follows that if A is a constant matrix
X(tz ) = exp [ (15 = t1)A] (48)
where ©
k
exp [(*c,2 - tl)A] = ch> T{% Aty = £ . (49)

Now consider the free motion of the system (Al) where A is
periodic of period T, i.e., A(t + T) = A(t). Observe that
X(t + T, ty) is a fundamental matrix of (A1). This is easily verified.
X(t + T, t,) = Alt + T) X(t + T, t;)
But A(t + T) = A(t), then
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X(t + T, to) = A(t) X(t + T, t_) .

Thus, X(t + T, t,) is a fundamental matrix of (Al).
Theorem: The state transition matrix of (Al) where A(t + T) = A(t)

can be written as

X(t, to) = Qlt, to) exp [(t - to)D] , Qltos to) = I (410)

where Q(t, t,) is a nonsingular periodic matrix of period T, and D is

a constant matrix.

Proof: The columns of X(t + T, ty) are n linearly independent
solutions of the homogeneous portion of (Al), therefore each of these
columns is given by ¢) = X(t, ty) ck where cx is an n x 1 column
matrix of constants. Let C be the n x n matrix whose columns are

the cxe Then

X(t +T, t5) =X(t, t;) C . (411)
Define D by
exp (TD) = C , (A12)
then
X(t + T, t'o) = X(t, to) exp (D) . (113)
Define

Aty o) = X(t, o) exp [-(t = to)D] o (A1)

Q(t, ty) is nonsingular since X(t, to) and exp [}(t - to)D] are non-

singular. Also, Q(t, t,) is periodic of period T since
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At + T, ) = X(t + T, to) exp [-(t + T - 1))

Qt + T, ty) = X(t, t,) exp (TD) exp (-TD) exp [—(t - to)D]

At + T, ty) = X(t, ty) exp [—(t - to)D] = Q(t, tg)

Now let

(t, t,) = Q7H(t, to) X(t, t,) = exp[(t - to)D] . (a15)
Hence, Y(t, to) is the state transition matrix of the system
y(t) = Dy (A16)

which is a differential equation with constant coefficients. Observe

that the vector y is related to the vector x by
x(t) = Q(t, t5) y(t) . (A17)

Hence, the investigation of the motion of a system with periodic
coefficients can be reduced to the study of the motion of a system
with constant coefficients. Any system with time varying coefficients
which can be transformed into a system with constant coefficients is
said to be reducible. The matrix Q is called a Lyapunov trans-
formation.

Substitution of (Al7) into the homogeneous part of (Al) gives

Qy+Qy=4Qy
Qy+aeby=-4aQy
D= gl (A - Q) (n18)
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Comment ¢ Although it has been proved that a system with periodic
coefficients can be transformed into a system with constant co-
efficients there is no general method for determining the matrix Q.

By another transformation

y=Rz (A19)

the system (Al6) can be transformed into its Jordan canonical form

2= A2 (A20)

where 1
=R DR . (A21)

=
I

The state transition matrix of the system (Al) is then given by

X(t, to) = P(t) exp [(t - to) A ]P’l(to) (A22)

where
x(t) = p(t) z(t) . (423)

However,
exp [(t - to) A ]= RL exp [(t - to)D] R . (A24)

Substitution of (A24) into (A22) gives

X(t, to) = P(t) B exp [(t - to)0] RFI(t,) « (425)

Comparison of (A25) and (A10) gives

R = P(t,) , (A26)

and
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Q(t, to) = P(t) r™L
Qt, to) = B(t) Fl(t,) (a27)

Equation (A22) is the form of the state transition matrix used.
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APPENDIX B

EXISTENCE AND UNIQUENESS CONDITIONS

In this appendix the existence and uniqueness conditioﬁs for a
solution of the time optimal control problem as set forth by lLa Salle
(1960) are given.

The equation of motion of the system is

x(t) = A(t) x(t) + B(t) u(t) . (B1)

The optimal control found by applying Pontryagin's maximum principle
is
w (t) = sgn[ pT(t,) X2t to) B()] - (B2)

Let 1(t) = x°1(¢, o) BG) (B3)

then (B2) becomes
w () = sgn [pT(t) Y(®)] (B4)

Definitions?

Controllable System

A system is said to be controllable if for each initial

state x, there is an admissible control that will bring the system

to the equilibrium state in finite time.
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Completely Controllable System

A system is said to be completely controllable if for

each initial state x, and if there is no restriction on the control
function it is always possible to bring the system from its initial
state to any other state x, at any given time t.

Proper Control System

A control system is said to be proper if pl(ty) Y(t) = 0
on an interval of positive length implies p(to) = Q.

Asymptotically Proper Control System

A control system is said to be asymptotically proper if

] IET(tO) Y(t)H dt = o (B5)

Normal Control System

A control system is said to be pormal if no component of
Em(to) Y(t), g(to) #0, is identically zero on an interval of
positive length. Note that all normal control systems are proper
but not every proper system is normal.
Theorem 1. Proper control systems of the form (Bl) are
completely controllable.
Theorem 2. Asymptotically proper control systems of the
form (Bl) are controllable.

Therefore, if a control system is asymptotically proper there is a
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control function which will transfer the system from any initial
state x, to the origin in finite time.
Theorem 3. The optimal control function, if it exists,
of a normal control system is uniquely determined
by (B2).
For the non-normal control systems the most that can be said
is that if a solution exists then there is an optimal control
function of the form (B2), but there may be an infinite number of

optimal control functions.
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AFPPENDIX C

FLETCHER-POWELL METHOD

In this appendix a brief description of the Fletcher-Powell
method will be given., For a complete description of the method the
original papers by Davidon (1959) and Fletcher and Powell (1963)
should be consulted.

The problem under consideration is that of finding a local
maxdmum? (or minimum) of a function f(xl, Xpy eeeeey x,) of several
variables Xj, Xp, eeees, Xpo In the neighborhood of a maximum (or
minimum) the second-order terms dominate. Therefore, for an itera-
tive procedure to converge quickly for a general function it must
have guaranteed rapid convergence for a general quadratice. Such a
method is the Fletcher-Powell method, a modification of Davidon's
variable metric method. It is an iterative gradient technique which
will find the maximum (or minimum) of a quadratic of n variables in
n iterations. Use of the method requires that the function and its

gradient be known at any point.

1 The presentation here will be that of finding a maxdimum. It will

differ slightly from the presentation found in Davidon's and Fletcher
and Powell's papers since they were written for the minimization of a
function.
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Consider the Taylor series expansion of a function f(x) about

some point X,e.

D af(x,)
£x) = 1) + L — (g - %)
i=1 axy 1
n n
% E: z: %1 (%o) (xy=x, )(x -xb ) + higher order
i=l =1 axy axj terms

(c1)
where x; and X, , i =1, 2, eees, n, are the components of the
i
vectors x and x,. Let g(x) be the gradient of f(x), and let G(x)

be the n x n matrix whose components are given by

. (c2)

The matrix G is called the Hessian. In matrix notation, equation (Cl,

becomes
£(x) = £(x,) + 87(x0) (x - X,)
+3 (x - x0T Glxy) (x - %) + eenee & (€3)

Also,
g(x) = g(x,) + 6(x,) (x-x5) + «eee . (c4)
Now let %, be the maximum point and consider the maximization

of a quadratic. Equations (C3) and (C4) become

£(x,) = £02) = - 3 (x - x)7 6(x,)(x - x) , (c5)
and
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Xy -x=-GHx) gx) = He (x) . (c6)

Note that G is a symmetric, negative definite matrix.

From equation (C6) we see that the direction toward the maximum
is not necessarily in the direction of the gradient. The two vectors
(%0 - x) and g will be in the same direction only if (X, - x) is an
eigenvector of the Hessian matrix G. If the ratios between the
corresponding eigenvalues are large there will probably be con-
siderable difference in the directions of the two vectors.

If the Hessian matrix is constant and known it is obvious that
the maximum can be found in one step. However, in general, G is not
constant and may be unknown. The Fletcher-Powell modification of
Davidon's method is an iterative procedure which searches for the
point where g = O and the Hessian matrix is negative definite. An
initial guess is made for H(H = -G), and H is modified each set on
the basis of the changes in x and g(x). The initial value of H is
usually chosen to be the unit matrix, i.e., the initial step is in
the direction of steepest ascent.

The procedure at the i=th step is as follows where the subscript
indicates the stage of the iterative procedure.

l. Set

Ei'_'Hiéi . (c7)

Find the optimum step1 in the direction gj. That is,

1 The method for finding the optimum step is given in Appendix D.
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3.

L

5

find a;, a; =0, such that f(x; + o5 gi) is a maximum
with respect to A along x5 ¢ k_gi.

Set
93 =@ 85 - (ce)

With
Ea =% %y (c9)
evaluate f(J_L_Hl) and g()_ci,ﬂ). Note that g.,, is

orthogonal to g;, i.e.,

T =
4 270
Set
=g - . 10
578 T & (€109
Modify H by
Hig =Hy 4 + B (c11)
where
T
s O
i
A== (c12)
;Y5

(H; 7.0 3
B; = - ——a— 2 (c13)

T
Y Hiys

6. Set i =i + 1 and repeat.
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APPENDIX D

METHOD FOR DETERMINING AN OPTIMUM STEP

In this appendix the method for obtaining the maximum along a
line is given. Davidon (1959) suggested a cubic interpolation which
Fletcher and Powell (1963) found satisfactory, but this procedure
was not satisfactory in this problem.

The problem is to find the maximum of a function f(x) of n
variables in a given direction x + A s, A = 0. A plot of this
function in a specified direction is given in the figure below.

When the function f(x) and its gradient g(x) are not known ana-
lytically but have to be computed digitally the maximum point cannot
be found exactly. An iterative procedure is used to find this point,

hence several iterations are required for each optimum step.

c D

4 B E
£ '/e/e—"\e\e\&
d

A

A=0 a A
The slope of the function at the initial point (point A)

is denoted by gyg where
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T
Bxs =& 2=E HE (p1)

This slope is positive since H is positive definite. The function
f(x) and its gradient 5(5) are then calculated at a point z on the
line x + A 8,A =0. The slope at this point is denoted by 825

where

g2s = & ()8 - (p2)

The value of A usedis )Fai—l except for the first step when A = 1

is used. At the point gz if g,, is positive (point B) the maximum
point has not yet been reached. An estimate for the location of

the maximum is then made by linearly extrapolating the slopes gyg
and gyge The length of this step is then increased by 1.25 so that
the next point will be on the other éide of the maximum, i.e., the
slope will be negative., If the slope is not negative this procedure
is continued using the previous two points to estimate the next
point until a point is found for which the slope is negative (points
D, E, or F). When a point is found where the slope is negative the
next guess is made using a linear interpolation of the slopes of two
points, the one with a positive slope closest tot he maximum and the
one with a negative slope nearest the maximum (points C and D).

This process is continued until the optimum step is found, or until

the maximum allowable number of iterations per step is exceeded.



When the maximum allowable number of iterations per step is exceeded
the last step is used as the optimum step; Twelve was usually used
in this problem as the maximum number of iterations per step. The

criteria for a point z to be the maximum point is

gZS

—|<B .
Exs

A value of 0.0l for B was usually used in this study.
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